4.7 Article

Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels

期刊

PHYSICAL REVIEW E
卷 76, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.76.011202

关键词

-

资金

  1. NEI NIH HHS [2 PN2 EY016570B] Funding Source: Medline

向作者/读者索取更多资源

A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2 nm and 3.5 nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2 ns simulation time K+ ions can permeate through a 1 nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据