4.8 Article

Probing Biomolecular Structures and Dynamics of Single Molecules Using In-gel Alternating-Laser Excitation

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 23, 页码 9561-9570

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac901423e

关键词

-

资金

  1. UK Bionanotechnology IRC
  2. EPSRC [EP/D058775]
  3. NIH [GM069709-01]
  4. European Community [FP7/2007-2013, HEALTH-F4-2008-201418]
  5. EPA

向作者/读者索取更多资源

Gel electrophoresis is a standard biochemical technique used for separating biomolecules on the basis of size and charge. Despite the use of gels in early single-molecule experiments, gel electrophoresis has not been widely adopted for single-molecule fluorescence spectroscopy. We present a novel method that combines gel electrophoresis and single-molecule fluorescence spectroscopy to simultaneously purify and analyze biomolecules in a gel matrix. Our method, in-gel alternating-laser excitation (ALEX), uses nondenaturing gels to purify biomolecular complexes of interest from free components, aggregates, and nonspecific complexes. The gel matrix also slows down translational diffusion of molecules, giving rise to long, high-resolution time traces without surface immobilization, which allow extended observations of conformational dynamics in a biologically friendly environment. We demonstrated the compatibility of this method with different types of single molecule spectroscopy techniques, including confocal detection and fluorescence-correlation spectroscopy. We demonstrated that in-gel ALEX can be used to study conformational dynamics at the millisecond time scale; by studying a DNA hairpin in gels, we directly observed fluorescence fluctuations due to conformational interconversion between folded and unfolded states. Our method is amenable to the addition of small molecules that can alter the equilibrium and dynamic properties of the system. In-gel ALEX will be a versatile tool for studying structures and dynamics of complex biomolecules and their assemblies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据