4.8 Article

Differential Rates of Glutathione Oxidation for Assessment of Cellular Redox Status and Antioxidant Capacity by Capillary Electrophoresis-Mass Spectrometry: An Elusive Biomarker of Oxidative Stress

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 16, 页码 7047-7056

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac901174g

关键词

-

资金

  1. National Science and Engineering Research Council of Canada
  2. Canada Foundation for Innovation
  3. Ontario Graduate Scholarship

向作者/读者索取更多资源

Glutathione metabolism plays a fundamental role in maintaining homeostasis and regulating the redox environment of a cell. Despite the widespread interest in quantifying glutathione metabolites in oxidative stress research, conventional techniques are hampered by complicated sample handling procedures to prevent significant oxidation artifacts generated during sample collection, sample pretreatment, and/or chemical analysis. In this report, a simple and validated method for glutathione analysis from filtered red blood cell (RBC) lysates was developed using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) in conjunction with fingerprick microsampling and ultrafiltration. About a 3-fold improvement in precision with nanomolar detection limits was achieved when using online sample preconcentration with CE-ESI-MS via a modified injection sequence, which permitted accurate determination of the intracellular reduced/oxidized glutathione ratio (GSH/GSSG), as well as other glutathione species, including protein-bound glutathione mixed disulfide (PSSG), free glutathione mixed disulfides (GSSR) and glutathione thioether conjugates (GSX). In this work, the redox status of filtered hemolysates was determined by the equilibrium half-cell reduction potential for glutathione (E-GSSG/2GSH), whereas its intrinsic antioxidant capacity was assessed by the apparent rate of metal-catalyzed oxidation of glutathione. In-vitro, incubation studies of intact RBCs with 1-chloro-2,4-dinitrobenzene (CDNB) and N-acetyl-L-cysteine (NAC) were found to significantly alter E-GSSH/2GSH and/or glutathione oxidation kinetics (e.g., k(GSSG)) relative to normal controls based on their function as a toxic electrophilic compound and a competitive free radical scavenging/reducing agent, respectively. Differential rates of glutathione oxidation (DIRGO) using CE-ESI-MS offers a novel strategy for global assessment of the impact of intrinsic metabolite constituents (i.e., metabolome) and/or extrinsic perturbants; on cellular redox. status that is relevant to improved understanding of aging and the pathogenesis of acute or chronic disease states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据