4.7 Article

Simultaneously physically and chemically gelling polymer system utilizing a poly(NIPAAm-co-cysteamine)-based copolymer

期刊

BIOMACROMOLECULES
卷 8, 期 7, 页码 2294-2300

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm070267r

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM065917, GM065917, R01 GM065917-03] Funding Source: Medline

向作者/读者索取更多资源

The objective of this work was to create an in situ physically and chemically cross-linking hydrogel for in vivo applications. N-Isopropylacrylamide (NIPAAm) was copolymerized with N-acryloxysuccinimide (NASI) via free radical polymerization. Poly(NIPAAm-co-NASI) was further modified to obtain poly(NIPAAm-co-cysteamine) through a nucleophilic attack on the carbonyl group of the NASI by the amine group of the cysteamine. Modification was verified by nuclear magnetic resonance. In addition to thermoresponsive physical gelling due to the presence of NIPAAm, this system also chemically gels via a Michael-type addition reaction when mixed with poly(ethylene glycol) diacrylate. The presence of both physical and chemical gelation resulted in material properties that are much improved compared to purely physical gels. The chemical gelation time of the copolymers was not significantly affected by the amount of thiol present due to the increased pK(a) of the copolymer containing more thiols. In addition, the swelling of the copolymers was highly dependent on the temperature and thiol content. Last, the rate of nucleophilic attack in the Michael-type addition reaction was shown to be highly dependent on pH and on the mole ratio of thiol to acrylate. Due to the improved mechanical properties, this material may be better suited for long-term functional replacement applications than other thermosensitive physical gels. With further development and biocompatibility testing, this material could potentially be applied as a temperature-responsive injectable biomaterial for functional embolization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据