4.8 Article

Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 9, 页码 3478-3484

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac802739h

关键词

-

资金

  1. National Basic Research Program [2007CB714501, 2007CB936404]
  2. National Natural Science Foundation of China [20535010, 20775035, 20828006]
  3. National Science Fund for Creative Research Groups [20521503]

向作者/读者索取更多资源

We developed an alcohol-free sol-gel approach to encapsulate biomolecules such as horseradish peroxidase (HRP) in an electrochemically induced three-dimensional porous silica matrix by a one-step process. In this sol-gel process, the electrochemically generated hydroxyl ions at the electrode surface by applying cathodic current promote the hydrolysis of ammonium fluorosilicate to produce silica, and simultaneously the generated hydrogen bubbles play an important role in forming porous silica matrix. If HRP is mixed with ammonium fluorosilicate solution, it can be encapsulated in the forming silica matrix. Since there is no ethanol involved in the entire procedure, bioactivities of the encapsulated HRP can be effectively retained. As revealed by scanning electron microscopy (SEM) characterization, the resultant silica matrix has interconnected and network-like porous structures. Macroporous holes induced by hydrogen bubbles scattering on the relatively flat areas of porous structure can be observed. Such structure free from cracks provides effective mass transport and long-term stability. Scanning electrochemical microscope (SECM) characterization shows that the immobilized HRP molecules uniformly distribute in the silica matrix. The present HRP electrochemical biosensor exhibits a quick response (within 5 s) to H2O2 in the concentration range from 0.02 to 0.20 mM (correlation coefficient of 0.9934) with a detection limit of 3 mu M. The apparent Michaelis-Menten constant is 0.88 mM. The present alcohol-free sol-gel approach is effective for biomolecule encapsulation and is promising for the construction of biosensors, bioelectronics, and biofuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据