4.8 Article

DNA as a Force Sensor in an Aptamer-Based Biochip for Adenosine

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 8, 页码 3159-3164

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac802766j

关键词

-

资金

  1. Nanosystem Initiative Munich
  2. Deutsche Forschungsgemeinschaft
  3. Elite Network of Bavaria (IDK-NBT)
  4. Max-Weber

向作者/读者索取更多资源

Without prior signal amplification, small molecules are difficult to detect by current label-free biochip approaches. In the present study, we developed a label-free capture biochip based on the comparative measurement of unbinding forces allowing for direct detection of small-molecule-aptamer interactions. The principle of this assay relies on increased unbinding forces of bipartite aptamers due to complex formation with their cognate ligands. The bipartite aptamers are immobilized on glass support via short DNA duplexes that serve as references to which unbinding forces can be compared. In a simple model system, adenosine is captured from solution by an adenosine-selective aptamer. linking the molecular chains, each consisting of a short DNA reference duplex and a bipartite aptamer, between glass and a poly(dimethylsiloxane) (PDMS) surface and subsequently separating the surfaces compares the unbinding forces of the two bonds directly. Fluorescence readout allows for quantification of the fractions of broken aptamer and broken reference bonds. The presence of micromolar adenosine concentrations reliably resulted in a shift toward larger fractions of broken reference bonds. Because of the force-based design, the interactions between the bipartite aptamer and the target, rather than the presence of the target, are detected and no washing step disturbing the equilibrium state prior to probing and no reporter aptamer or antibody is required. The assay exhibits excellent selectivity against other nucleotides and detects adenosine in the presence of a complex molecular background. Multiplexing was demonstrated by performing whole titration experiments on a single chip revealing an effective half-maximal concentration of 124.8 mu M agreeing well with literature values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据