4.8 Article

Workflow for Large Scale Detection and Validation of Peptide Modifications by RPLC-LTQ-Orbitrap: Application to the Arabidopsis thaliana Leaf Proteome and an Online Modified Peptide Library

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 19, 页码 8015-8024

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac9011792

关键词

-

资金

  1. National Science Foundation [MCB-0718897, DBI-0701736]

向作者/读者索取更多资源

Post-translational modifications (PTMs) of proteins add to the complexity of proteomes, thereby complicating the task of proteome characterization. An efficient strategy to identify this peptide heterogeneity is important for determination of protein function, as well as for mass spectrometry-based protein quantification. Furthermore, studies of allelic variation or single nucleotide polymorphisms (SNPs) at the proteome level, as well as mRNA editing, are increasingly relevant, but validation and determination of false positive rates are challenging. Here we describe an effective workflow for large scale PTM and amino acid substitution identification based on high resolution and high mass accuracy RPLC-MS data sets. A systematic validation strategy of PTMs using RPLC retention time shifts was implemented, and a decision tree for validation is presented. This workflow was applied to Arabidopsis proteome preparations; 1.5 million MS/MS spectra were processed resulting in 20% sequence assignments, with 51% from modified sequences and matching to 2904 proteins; this high assignment rate is in part due to the high quality spectral data. A searchable modified peptide library for Arabidopsis is available online at http://ppdb.tc.comell.edu/. We discuss confidence in peptide and PTM assignment based on the acquired data set, as well as implications for quantitative analysis of physiologically induced and preparation-related modifications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据