4.6 Article

Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures

期刊

JOURNAL OF MATERIALS SCIENCE
卷 42, 期 13, 页码 5046-5056

出版社

SPRINGER
DOI: 10.1007/s10853-006-0579-5

关键词

-

向作者/读者索取更多资源

Ceramic matrix composites (CMCs) have been proposed as potential structural materials for application of high temperature technologies. Excellent high temperature performance of CMCs requires that fibers must have high enough thermal stability and sufficient mechanical properties throughout the service life. In order to clarify the correlation between the mechanical properties and the microstructure of SiC-based fibers, SiC-based fibers were annealed at elevated temperatures in Ar for 1 h. After annealing, the fracture strengths on these fibers were evaluated at room temperature by tensile test; the microstructural features were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Furthermore, the fracture mechanics was applied to estimate the fracture toughness and the critical fracture energy of these fibers. As a result, excellent microstructure and mechanical stabilities were observed for SiC fibers with near-stoichiometric composition and high-crystallite structure. Combining the microstructure examination with tensile test indicates that the thermal and mechanical stabilities of SiC fibers at high temperatures were mainly controlled by their crystallization and composition as well as other factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据