4.8 Article

Proteomic Profiling of a High-Producing Chinese Hamster Ovary Cell Culture

期刊

ANALYTICAL CHEMISTRY
卷 81, 期 17, 页码 7357-7362

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac900792z

关键词

-

向作者/读者索取更多资源

The productivity of mammalian cell culture expression systems is critically important to the production of biopharmaceuticals. In this study, a high-producing Chinese hamster ovary cell culture which was transfected with the apoptosis inhibitor Bcl-X-L, gene was compared to a low-producing control that was not transfected. Shotgun proteomics was used to compare the high and low-producing fed-batch cell cultures at different growth time points. The goals of this study were twofold; it would be of value to find a biomarker that could predict cell lines with higher growth efficiency and to gain mechanistic insights into the effects of the introduction of a foreign gene that is known to have growth regulating properties in human cells. A total of 392 proteins were identified in this study, and 32 of these proteins were determined to be differentially expressed. In the high-producing cell culture, several proteins related to protein metabolism were upregulated, such as eukaryotic translation initiation factor 3 and ribosome 40S. In addition, several intermediate filament proteins such as vimentin and annexin, as well as histone H1.2 and H2A, were down-regulated in the high producer. The expression of these proteins may be indicative of cellular productivity. A growth inhibitor, galectin-1 was down-regulated in the high producer, which may he linked to the expression of Bcl-X-L. The molecular chaperone BiP was upregulated significantly in the high producer and may indicate an unfolded protein response due to endoplasmic reticulum (ER) stress. Several proteins involved in regulation of the cell cycle such as RACK1 and GTPase Ran were found to be differentially expressed, which may be due to a differentially controlled cell cycle between low- and high-producing cell cultures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据