4.5 Article

Estimating information rates with confidence intervals in neural spike trains

期刊

NEURAL COMPUTATION
卷 19, 期 7, 页码 1683-1719

出版社

MIT PRESS
DOI: 10.1162/neco.2007.19.7.1683

关键词

-

向作者/读者索取更多资源

Information theory provides a natural set of statistics to quantify the amount of knowledge a neuron conveys about a stimulus. A related work (Kennel, Shlens, Abarbanel, & Chichilnisky, 2005) demonstrated how to reliably estimate, with a Bayesian confidence interval, the entropy rate from a discrete, observed time series. We extend this method to measure the rate of novel information that a neural spike train encodes about a stimulus-the average and specific mutual information rates. Our estimator makes few assumptions about the underlying neural dynamics, shows excellent performance in experimentally relevant regimes, and uniquely provides confidence intervals bounding the range of information rates compatible with the observed spike train. We validate this estimator with simulations of spike trains and highlight how stimulus parameters affect its convergence in bias and variance. Finally, we apply these ideas to a recording from a guinea pig retinal ganglion cell and compare results to a simple linear decoder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据