4.7 Article

Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L.

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 60, 期 3, 页码 468-476

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2007.01.004

关键词

antioxidant enzyme; cadmium; free proline; hyperaccumulator; phytochelatin; Solanum nigrum; tolerance

向作者/读者索取更多资源

Changes in the activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and the contents of malondialdehyde (MDA), chlorophyll, free proline and phytochelatins (PCs) in Solanum nigrum, the newly discovered Cd-hyperaccumulator were examined and compared with a non-hyperaccumulator Solanum melongena. It was indicated that leaf SOD and POD activity of S. nigrum was significantly higher than that of S. melongena. The Cd treatments significantly increased root SOD activity, leaf POD activity, and CAT activity and free proline content in the leaves and roots of S. nigrum. On the contrary, the Cd treatments decreased SOD activity, and did not change CAT activity in the leaves and roots of S. melongena. Moreover, there were no significant differences in free proline levels in the roots of S. melongena. These results validated that S. nigrum had a greater capacity than S. melongena to adapt to oxidative stress caused by Cd and free proline accumulation might be responsible for the tolerance of S. nigrum to Cd. Treated with 10 mu g Cd g(-1), growth of S. nigrum and its contents of chlorophyll and MDA were basically unaffected. In contrast, there were a decrease in the growth and chlorophyll content, and an increase in MDA in the roots of S. melongena. Although lipid peroxidation was promoted in both the hyperaccumulator and non-hyperaccumulator by high Cd stress, the greater increase took place in the tissues of S. melongena. The PCs level in roots of S. nigrum was significantly lower than that of S. melongena. On the contrary, the content of leaf PCs was much higher in S. nigrum than that in S. melongena. These results further suggested that antioxidative defense in the Cd-hyperaccumulator might play an important role in Cd tolerance, and PCs synthesis is not the primary reason for Cd tolerance although PCs in S. nigrum increased significantly by Cd. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据