4.8 Article

Analytical characterization of the electrospray ion source in the nanoflow regime

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 17, 页码 6573-6579

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac800683s

关键词

-

资金

  1. NIH National Center for Research Resources [RR018522]
  2. Environmental Molecular Sciences Laboratory
  3. Pacific Northwest National Laboratory (PNNL) in Richland
  4. DOE [AC05-76RLO 1830]

向作者/读者索取更多资源

A detailed characterization of a conventional low-flow electrospray ionization (ESI) source for mass spectrometry (MS) using solution compositions typical of reversedphase liquid chromatography is reported. Contrary to conventional wisdom, the pulsating regime consistently provided better ESI-MS performance than the cone-jet regime for the interface and experimental conditions studied. This observation is supported by additional measurements showing that a conventional heated capillary interface affords more efficient sampling and transmission for the charged aerosol generated by a pulsating electrospray. The pulsating electrospray provided relatively constant MS signal intensities over a wide range of voltages, while the signal decreased slightly with increasing voltage for the cone-jet electrospray. The MS signal also decreased with increasing emitter-interface distance for both pulsating and cone-jet electrosprays due to the expansion of the charged aerosol plume. At flow rates below 100 nL/min, the MS signal increased with increasing flow rate due to increased number of gas-phase ions produced. At flow rates greater than 100 nL/min, the signal reached a plateau due to decreasing ionization efficiency at larger flow rates. These results suggest approaches for improving MS interface performance for low-flow (nano- to micro-) electrosprays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据