4.8 Article

Lateral diffusion of thiol ligands on the surface of Au nanoparticles: An electron paramagnetic resonance study

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 1, 页码 95-106

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac071266s

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [GR/S45300/01] Funding Source: researchfish

向作者/读者索取更多资源

The lateral mobility of the thiolate ligands on the surface of Au nanoparticles was probed by EPR spectroscopy. This was achieved by using bisnitroxide ligands, which contained a disulfide group (to ensure attachment to the Au surface) and a cleavable ester bridge connecting the two spin-labeled branches of the molecule. Upon adsorption of these ligands on the surface of Au nanoparticles, the two spin-labeled branches were held next to each other by the ester bridge as evidenced by the spin-spin interactions. Cleavage of the bridge removed the link that kept the branches together. CW and pulsed EPR (DEER) experiments showed that the average distance between the adjacent thiolate branches on the Au nanoparticle surface only marginally increased after cleaving the bridge and thermal treatment. This implies that the lateral diffusion of thiolate ligands on the nanoparticle surface is very slow at room temperature and takes hours even at elevated temperatures (90 degrees C). The changes in the distance distribution observed at high temperature are likely due to ligands hopping between the nanoparticles rather than diffusing on the particle surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据