4.7 Article

Methane uptake in soils from Pinus radiata plantations, a reverting shrubland and adjacent pastures:: Effects of land-use change, and soil texture, water and mineral nitrogen

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 39, 期 7, 页码 1437-1449

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2007.01.005

关键词

land-use change; exotic pine forest; native shrubland; pastures; soil methane fluxes; methanotrophs; PLFAs; microbial biomass; nitrogen; aeration status

向作者/读者索取更多资源

Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 degrees C ) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 mu g CH4 C m(-2)h(-1), respectively, and was significantly higher than in the pasture cores (about 21 and 6 mu g CH4-C m(-2) h(-1), respectively). In the non-volcanic soil, however. CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 mu g m(-2) h(-1), except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据