4.7 Article

Distribution analysis of nonsynonymous polymorphisms within the human kinase gene family

期刊

GENOMICS
卷 90, 期 1, 页码 49-58

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2007.03.006

关键词

kinase; kinases; disease; single nucleotide polymorphism; cancer; protein domains; amino acid sequence; statistical study; bioinformatics

向作者/读者索取更多资源

The human kinase gene family is composed of 518 genes that are involved in a diverse spectrum of physiological functions. They are also implicated in a number of diseases and encompass 10% of current drug targets. Contemporary, high-throughput sequencing efforts have identified a rich source of naturally occurring single nucleotide polymorphisms (SNPs) in kinases, a subset of which occur in the coding region of genes (cSNPs) and result in a change in the encoded amino acid sequence (nonsynonymous coding SNP; nscSNPs). What fraction of this naturally occurring variation underlies human disease is largely unknown (uDC), and much of it is assumed not to be disease causing (DC). We pursued a comprehensive computational analysis of the distribution of 1463 nscSNPs and 999 DC nscSNPs within the kinase gene family and have found that DCs are overrepresentated in the kinase catalytic domain and in receptor structures. In addition, the frequencies with which specific amino acid changes occur differ between the DCs and the uDCs, implying different biological characteristics for the two sets of human polymorphisms. Our results provide insights into the sequence and structural phenomena associated with naturally occurring kinase nscSNPs that contribute to human diseases. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据