4.8 Article

Factors that influence fragmentation behavior of N-linked glycopeptide ions

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 10, 页码 3684-3692

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac800067y

关键词

-

资金

  1. NIGMS NIH HHS [GM 49077, R01 GM049077] Funding Source: Medline

向作者/读者索取更多资源

The investigation of site-specific glycosylation is essential for further understanding the many biological roles that glycoproteins play; however, existing methods for characterizing site-specific glycosylation either are slow or yield incomplete information. Mass spectrometry (MS) is being applied to investigate site-specific glycosylation with bottom-up proteomic type strategies. When using these approaches, tandem mass spectrometry techniques are often essential to verify glycopeptide composition, minimize false positives, and investigate structure. The fragmentation behavior of glycopeptide ions has previously been investigated with multiple techniques including collision induced dissociation (CID), infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD); however, due to the almost exclusive analysis of multiply protonated tryptic glycopeptide ions, some dissociation behaviors of N-linked glycopeptide ions have not been fully elucidated. In this study, IRMPD of N-linked glycopeptides has been investigated with a focus on the effects of charge state, charge carrier, glycan composition, and peptide composition. Each of these parameters was shown to influence the fragmentation behavior of N-linked glycopeptide ions. For example, in contrast to previously reported accounts that IRMPD results only in glycosidic bond cleavage, the fragmentation of singly protonated glycopeptide ions containing a basic amino acid residue almost exclusively resulted in peptide backbone cleavage. The fragmentation of the doubly protonated glycopeptide ion exhibited fragmentation similar to that previously reported; however, when the same glycopeptide was sodium coordinated, a previously inaccessible series of glycan fragments were observed. Molecular modeling calculations suggest that differences in the site of protonation and metal ion coordination may direct glycopeptide ion fragmentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据