4.8 Article

Solution Titration by Wall Deprotonation during Capillary Filling of Silicon Oxide Nanochannels

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 21, 页码 8095-8101

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac800603m

关键词

-

资金

  1. Nanoned (flagship Nanofluidics)

向作者/读者索取更多资源

This paper describes a fundamental challenge when using silicon oxide nanochannels for analytical systems, namely the occurrence of a strong proton release or proton uptake from the walls in any transient situation such as channel filling. Experimentally, when fluorescein solutions were introduced into silicon oxide nanochannels through capillary pressure, a distinct bisection of the fluorescence was observed, the zone of the fluid near the entrance fluoresced, while the zone near the meniscus, was dark. The ratio between the zones was found to be constant in time and to depend on ionic strength, pH, and the presence of a buffer and its characteristics. Theoretically, using the Gouy-Chapman-Stern model of (t)he electrochemical double layer, we demonstrate that this phenomenon can be effectively modeled as a titration of the solution by protons released from silanol groups on the walls, as a function of the pH and ionic strength of the introduced solution. The results demonstrate the dominant influence of the surface on the fluid composition in nanofluidic experiments, in transient situations such as filling, and changes in solvent properties such as the pH or ionic strength. The implications of these fundamental properties of silicon oxide nanochannels are important for analytical strategies and in particular the analysis of complex biological samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据