4.8 Article

Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 6, 页码 2265-2271

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac7026436

关键词

-

向作者/读者索取更多资源

This paper reports on the characterization and preliminary comparison of gold nanoparticles of differing surface modification and shape when used as extrinsic Raman labels (ERLs) in high-sensitivity heterogeneous immunoassays based on surface enhanced Raman scattering (SERS). ERLs are gold nanoparticles coated with an adlayer of an intrinsically strong Raman scatterer, followed by a coating of a molecular recognition element (e.g., antibody). Three types of ERLs, all with a nominal size of similar to 30 nm, were fabricated by using spherical citrate-capped gold nanoparticles (sp-cit-Au NPs), spherical CTAB-capped gold nanoparticles (sp-CFAB-Au NPs), or cube-like CTAB-capped gold nanoparticles (cu-CFAB-Au NPs) as cores. The performance of these particles was assessed via a sandwich immunoassay for human IgG in phosphate buffered saline. The ERLs fabricated with sp-CTAB-Au NPs as cores proved to be more than 50 times more sensitive than those with sp-cit-Au NPs as cores; the same comparison showed that the ERLs with cu-CTAB-Au NPs as cores were close to 200 times more sensitive. Coupled with small differences in levels of nonspecific adsorption, these sensitivities translated to a limit of detection (LOD) of 94, 2.3, and 0.28 ng/mL, respectively, for the detection of human IgG in the case of sp-cit-Au NPs, sp-CTAB-Au NPs, and cu-CTAB-Au NPs. The LOD of the cu-CTAB-Au NPs is therefore similar to 340 times below that for the sp-cit-Au NPs. Potential applications of these labels to bioassays are briefly discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据