4.8 Article

Trapping of Bioparticles via Microvortices in a Microfluidic Device for Bioassay Applications

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 23, 页码 8937-8945

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac800972t

关键词

-

资金

  1. National Science Council of the Republic of China [NSC 95-2120-M-002-006, NSC 96-2120-M-002-002]

向作者/读者索取更多资源

This paper presents hydrodynamic trapping of bioparticles in a microfluidic device. An in-plane oscillatory microplate, driven via Lorentz law, generates two counter-rotating microvortices, trapping the bioparticles within the confines of the microvortices. The force required to trap bioparticles is quantified by tuning the background flow and the microplate's excitation voltage. Trapping and releasing of 10-mu m polystyrene beads, human embryonic kidney (HEK) cells, red blood cells (RBCs), and IgG antibodies were demonstrated. Results show the microvortices rotates at 0-6 Hz corresponding to 2-9 Vpp (peak-to-peak) excitation. At a particular rate of rotation (2-7 Vpp tested), a bioparticle is trapped until the background flow exceeds a limit. This flow limit increases with the rate of rotation, which defines the trap/release force boundary over the range of operation. This boundary is 12 +/- 2.0 pN for cell-size bioparticles and 160 +/- 50 fN for antibodies. Trapping of RBCs demonstrated microvortices' ability for nonspherical cells. Cell viability was studied via HEK cells that were trapped for 30 min and shown to be viable. This hydrodynamically controlled approach to trap a wide range of bioparticles should be useful as a microfluidic device for cellular and subcellular bioassay applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据