4.8 Article

Detection of kinase translocation using microfluidic electroporative flow cytometry

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 4, 页码 1087-1093

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac702065e

关键词

-

资金

  1. NCI NIH HHS [R01 CA037372, R01 CA037372-26, CA 37372] Funding Source: Medline

向作者/读者索取更多资源

Directed localization of kinases within cells is important for their activation and involvement in signal transduction. Detection of these events has been largely carried out based on imaging of a low number of cells and subcellular fractionation/Western blotting. These conventional techniques either lack the high throughput desired for probing an entire cell population or provide only the average behaviors of cell populations without information from single cells. Here we demonstrate a new tool, referred to as microfluidic electroporative flow cytometry, to detect the translocation. of an EGFP-tagged tyrosine kinase, Syk, to the plasma membrane in B cells at the level of the cell population. We combine electroporation with flow cytometry and observe the release of intracellular kinase out of the cells during electroporation. We found that the release of the kinase was strongly influenced by its subcellular localization. Cells stimulated through the antigen receptor have a fraction of the kinase at the plasma membrane and retain more kinase after electroporation than do cells without stimulation and translocation. We are able to differentiate a cell population with translocation from one,without it with the information collected from individual cells of the entire population. Ibis technique potentially allows detection of protein translocation at the single-cell level. Due to the frequent involvement of kinase translocations in disease processes such as oncogenesis, our approach will have utility for kinase-related drug discovery and tumor diagnosis and staging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据