4.4 Article

Novel injectable and in situ curable glycolide/lactide based biodegradable polymer resins and composites

期刊

JOURNAL OF BIOMATERIALS APPLICATIONS
卷 22, 期 1, 页码 33-54

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0885328206068691

关键词

biodegradable; in situ polymerizable; degradation; oligomeric polyesters; compressive strengths

向作者/读者索取更多资源

Novel in situ polymerizable liquid three-arm biodegradable oligomeric polyesters based upon glycolic acid (GA), L-lactic acid (LLA), and their copolymers are synthesized and characterized. Injectable and in situ curable polymer neat resins and their composites formulated with bioabsorbable beta-tricalcium phosphate are prepared at room temperature using photo- and redox-initiation systems, respectively. The cured neat resins show the initial compressive yield strength (YCS, MPa), modulus (M, MPa), ultimate compressive strength (UCS, MPa), and toughness (T, kN mm), ranging from 4.0 to 20.1, 201.5 to 730.2, 82.7 to 310.5, and 1.02 to 3.93. The cured composites show the initial YCS, M, UCS and T, ranging from 27.7 to 56.4, 1440 to 4870, 81.6 to 158.9, and 0.94 to 1.97. Increasing GA/LLA ratio increases all the initial compressive strengths of both neat resins and composites. Increasing filler content increases YCS and M but decreases UCS and T. A diametral tensile strength test shows the same trend as a compressive strength test. There seems to be an optimal flexural strength for the composite at the filler content around 43%. An increasing molar ratio increases curing time but decreases the degree of conversion (DC). An increasing filler content increases curing time but decreases exotherm and DC. During the course of degradation, all the materials show a burst degradation behavior within 24 h, followed by an increase in CS. The poly(glycolic acid) neat resin completely loses its strength at around Day 45. The composites completely lose their strengths at different time intervals, depending on their molar ratio and filler content. The degradation rate is found to be molar ratio and filler-content dependent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据