4.7 Article

A 3D implicit unstructured-grid finite volume method for structural dynamics

期刊

COMPUTATIONAL MECHANICS
卷 40, 期 2, 页码 299-312

出版社

SPRINGER
DOI: 10.1007/s00466-006-0100-7

关键词

finite volume method; unstructured grid; dual time stepping; structural dynamics

向作者/读者索取更多资源

In this work, a new vertex-based finite volume method (FVM) using unstructured grids and cell-based data structure is proposed for computational analysis of two-and three-dimensional (2D/3D) general structural dynamic problems. The governing equations are spatially discretized by the FVM and an implicit dual time stepping scheme is employed to integrate the equations in time. The proposed method is applied to calculate deformations and dynamics of 2D and 3D cantilevers, as well as simply supported and clamped square plates. Computational results obtained are found to agree well with analytical solutions. It can be a viable alternative to the traditional finite element method (FEM) for structural dynamic calculations. And it can be seamlessly integrated into FVM-based Computational Fluid Dynamics (CFD) solver for simulating fluid-structure interaction (FSI).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据