4.8 Article

Experimental study of porous silicon shell pillars under retentive conditions

期刊

ANALYTICAL CHEMISTRY
卷 80, 期 14, 页码 5391-5400

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac800424q

关键词

-

向作者/读者索取更多资源

Experimental measurements of the retention capacity and the band broadening in perfectly ordered porous shell pillar array columns are presented for a wide range of retention conditions and layer thicknesses. The porous silicon shells were obtained using electrochemical anodization of the solid silicon pillars obtained using deep reactive ion etching. Using 10-mu m-wide pillars, minimal reduced plate height values of the order of h(min) = 0.4-0.5 were obtained under nonretained conditions, even in cases where the outer shell made up 20% of the total diameter. Under retained conditions, minimal plate heights around h(min) = 0.9 were obtained, even at retention factors up to k' = 12. Using a model based on Giddings non-equilibrium theory, and using a newly calculated value for the stationary zone configuration factor for the case of porous shell cylinders, a plate height model describing the band broadening in porous shell pillar arrays has been established. The validity of this model is demonstrated by showing that the geometrical parameters appearing in the model and fitted using band-broadening measurements under nonretained conditions can be used to relatively accurately predict the band broadening under retained component conditions. Using this model, some speculations on the ultimate performance of porous pillar array columns could be made.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据