4.7 Article

A modified polymerase chain reaction-long serial analysis of gene expression protocol identifies novel transcripts in human CD34+ bone marrow cells

期刊

STEM CELLS
卷 25, 期 7, 页码 1681-1689

出版社

ALPHAMED PRESS
DOI: 10.1634/stemcells.2006-0794

关键词

long serial analysis of gene expression; stem/progenitor cells; bone marrow; transcriptome

向作者/读者索取更多资源

Transcriptome profiling offers a powerful approach to investigating developmental processes. Long serial analysis of gene expression (LongSAGE) is particularly attractive for this purpose because of its inherent quantitative features and independence of both hybridization variables and prior knowledge of transcript identity. Here, we describe the validation and initial application of a modified protocol for amplifying cDNA preparations from <10 ng of RNA (<10(3) cells) to allow representative LongSAGE libraries to be constructed from rare stem cell-enriched populations. Quantitative real-time polymerase chain reaction (Q-RT-PCR) analyses and comparison of tag frequencies in replicate LongSAGE libraries produced from amplified and nonamplified cDNA preparations demonstrated preservation of the relative levels of different transcripts originally present at widely varying levels. This PCR-LongSAGE protocol was then used to obtain a 200,000-tag library from the CD34(+) subset of normal adult human bone marrow cells. Analysis of this library revealed many anticipated transcripts, as well as transcripts not previously known to be present in CD34(+) hematopoietic cells. The latter included numerous novel tags that mapped to unique and conserved sites in the human genome but not previously identified as transcribed elements in human cells. Q-RT-PCR was used to demonstrate that 10 of these novel tags were expressed in cDNA pools and present in extracts of other sources of normal human CD34(+) hematopoietic cells. These findings illustrate the power of LongSAGE to identify new transcripts in stem cell-enriched populations and indicate the potential of this approach to be extended to other sources of rare cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据