4.7 Article

Carotenoids, oxidative stress and female mating preference for longer lived males

期刊

出版社

ROYAL SOC
DOI: 10.1098/rspb.2007.0317

关键词

oxidative stress; reactive oxygen species; sexual selection; female preference

资金

  1. Natural Environment Research Council [NER/A/S/2003/00490] Funding Source: researchfish

向作者/读者索取更多资源

Some of the most spectacular exaggerated sexual ornaments are carotenoid dependent. It has been suggested that such ornaments have evolved because carotenoid pigments are limiting for both signal expression and in their role as antioxidants and immunostimulants. An implicit assumption of this hypothesis is that males which can afford to produce more elaborate carotenoid-dependent displays are signalling their enhanced ability to resist parasites, disease or oxidative stress and hence would be predicted to live longer. Therefore, in species with carotenoid-dependent ornaments where a parent's future longevity is crucial for determining offspring survival, there should be a mating preference for partners that present the lowest risk of mortality during the breeding attempt, as signalled by the ability to allocate carotenoids to sexual displays. In an experimental study using three-spined sticklebacks (Gasterosteus aculeatus), we show that when dietary carotenoid intake is limited, males attempt to maintain their sexual ornament at the expense of body carotenoids and hence suffer from reduced reproductive investment and a shorter lifespan. These males also suffer from an increased susceptibility to oxidative stress, suggesting that this may constitute the mechanism underlying the increased rate of ageing. Furthermore, in pairwise mate-choice trials, females preferred males that had a greater access to carotenoids and chance of surviving the breeding season, suggesting that females can make adaptive mate choice decisions based on a male's carotenoid status and potential future longevity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据