4.7 Article

Representing molecule-surface interactions with symmetry-adapted neural networks

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 127, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2746232

关键词

-

向作者/读者索取更多资源

The accurate description of molecule-surface interactions requires a detailed knowledge of the underlying potential-energy surface (PES). Recently, neural networks (NNs) have been shown to be an efficient technique to accurately interpolate the PES information provided for a set of molecular configurations, e.g., by first-principles calculations. Here, we further develop this approach by building the NN on a new type of symmetry functions, which allows to take the symmetry of the surface exactly into account. The accuracy and efficiency of such symmetry-adapted NNs is illustrated by the application to a six-dimensional PES describing the interaction of oxygen molecules with the Al(111) surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据