4.5 Article

Interactions between higher and lower visual areas improve shape selectivity of higher level neurons - Explaining crowding phenomena

期刊

BRAIN RESEARCH
卷 1157, 期 -, 页码 167-176

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2007.03.090

关键词

visual perception; computational neural network model; shape selectivity; crowding

向作者/读者索取更多资源

Recent theories of visual perception propose that feedforward cortical processing enables rapid and automatic object categorizations, yet incorporates a limited amount of detail. Subsequent feedback processing highlights high-resolution representations in early visual areas and provides spatial detail. To verify this hypothesis, we separate the contributions of feedforward and feedback signals to the selectivity of cortical neurons in a neural network simulation that is modeled after the hierarchical feedforward-feedback organization of cortical areas. We find that in such a network the responses of high-level neurons can initially distinguish between low-resolution aspects of objects but are 'blind' to differences in detail. After several feedback-feedforward cycles of processing, however, they can also distinguish between objects that differ in detail. Moreover, we find that our model captures recent paradoxical results of crowding phenomena, showing that spatial detail that is lost in visual crowding is nevertheless able to evoke specific adaptation effects. Our results thus provide an existence proof of the feasibility of novel theoretical models and provide a mechanism to explain various psychophysical and physiological results. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据