4.8 Article

Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion

期刊

CHEMISTRY OF MATERIALS
卷 19, 期 14, 页码 3399-3405

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm070182x

关键词

-

向作者/读者索取更多资源

Core-shell Ni-Au nanoparticles were chemically synthesized through a redox-transmetalation method in reverse microemulsion. The powder X-ray diffraction patterns revealed the presence of crystalline gold and nickel and the absence of any nickel oxides, nickel boride or other byproducts. The core-shell structure could be clearly observed by the transmission electron microscope. In addition, the Ni cores and the gold shells were further verified by the high-resolution transmission electron microscope and the Z-contrast image. The diameter of the nanoparticles ranged from 15 to 30 nm, with 5-10 nm core diameters and 5-10 nm shell thickness. The UV-visible absorption spectra of these nanoparticles showed a red shift (relative to pure gold nanoparticles), also in agreement with the gold shell morphology. For magnetic properties, the zero-field-cooled and field-cooled temperature dependence of the magnetization indicated the blocking temperature was at 16 K. The magnetization curves carried out at 5 K showed that the saturation magnetization, remanent magnetization, and coercivity at this temperature were 9.0 emu/g, 4.1 emu/g, and 2 kOe, respectively. The magnetization curves at 300 K presented the typical superparamagnetic behavior without any remains of remanent magnetization or coercivity, and the saturation magnetization at this temperature was 0.7 emu/g.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据