4.7 Article

The sensitivity of the radiation budget in a climate simulation to neglecting the effect of small ice particles

期刊

JOURNAL OF CLIMATE
卷 20, 期 14, 页码 3527-3541

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI4191.1

关键词

-

向作者/读者索取更多资源

The sensitivity of the atmospheric radiation budget to ignoring small ice particles (D <= 100 mu m) in parameterization of the mean effective size of ice particles was investigated by using the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general atmospheric circulation model (AGCM3). The results indicate that small ice particles play two crucial roles in the radiative transfer that influence the simulated climate. First, they inhibit the IR radiation from escaping to space and, second, they enhance the scattering of solar radiation. On average, these two effects tend to partially cancel each other out. However, based on AGCM simulations, the small ice crystals make clouds more opaque to IR radiation. Generally, 5-yr seasonally averaged GCM results suggest that the strongest anomalies in outgoing longwave radiation (OLR) are found in the Tropics, reaching 15 to 25 W m(-2) in areas where cold high cirrus anvil clouds are prevalent. The global average change in net cloud radiative forcing was 2.4 W m(-2) in June-August (JJA) and 1.7 W m(-2) in December-February (DJF). The change in globally averaged 5-yr mean cloud forcing was close to 1.9 W m(-2). When the small particles were included, the globally averaged 5-yr mean precipitation decreased by about 8%, but cloudiness increased only slightly (by 2%). The 5-yr averaged global mean surface (screen) temperature also increased slightly (about 0.2 degrees C) when the small ice particles were included.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据