4.4 Article

Kinetic Monte Carlo simulations of Pd deposition and island growth on MgO(100)

期刊

SURFACE SCIENCE
卷 601, 期 14, 页码 3133-3142

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.susc.2007.05.027

关键词

kinetic Monte Carlo; deposition; island formation; and ripening; Pd on MgO(100); density functional calculations

向作者/读者索取更多资源

The deposition and ripening of Pd atoms on the MgO(100) surface are modeled using kinetic Monte Carlo simulations. The density of Pd islands is obtained by simulating the deposition of 0.1 ML in 3 min, Two sets of kinetic parameters are tested and compared with experiment over a 200-800 K temperature range. One model is based upon parameters obtained by fitting rate equations to experimental data and assuming the Pd monomer is the only diffusing species. The other is based upon transition rates obtained from density functional theory calculations which show that small Pd clusters are also mobile. In both models, oxygen vacancy defects on the MgO surface provide strong traps for Pd monomers and serve as nucleation sites for islands. Kinetic Monte Carlo simulations show that both models reproduce the experimentally observed island density versus temperature, despite large differences in the energetics and different diffusion mechanisms. The low temperature Pd island formation at defects is attributed to fast monomer diffusion to defects in the rate-equation-based model, whereas in the DFT-based model, small clusters form already on terraces and diffuse to defects. In the DFT-based model, the strong dimer and trimer binding energies at charged oxygen vacancy defects prevent island ripening below the experimentally observed onset temperature of 600 K. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据