4.4 Article

Vibrational corrections to geometries of transition metal complexes from density functional theory

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 28, 期 9, 页码 1531-1537

出版社

WILEY
DOI: 10.1002/jcc.20678

关键词

density functional calculations; ligand effects; sandwich complexes; structure elucidation; transition metals

向作者/读者索取更多资源

Zero-point vibrational corrections are computed at the BP86/AE1 level for the set of 50 transition-metal/ligand bonds that have recently been proposed as testing ground for DFT methods, because of the availability of precise experimental gas-phase geometries (Buhl and Kabrede, J Chem Theory Comput 2006, 2, 1282). These corrections are indicated to be transferable to a large extent between various density-functional/basis-set combinations, so that they can be used to estimate zero-point averaged r(g)(0) distances from r(e) values optimized at other theoretical levels. Applying this approach to a number of popular DFT levels does not, in general, improve their overall accuracy in terms of mean and standard deviations from experiment. The hybrid variant of the meta-functional TPSS is confirmed as promising choice for computing structures of transition-metal complexes. (C) 2007 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据