4.6 Article

Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves

期刊

LANGMUIR
卷 23, 期 15, 页码 8212-8216

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la7003485

关键词

-

向作者/读者索取更多资源

To understand why lotus leaf surfaces have a two-scale structure, we explore in this paper two stability mechanisms. One is the stability of the Cassie-Baxter wetting mode that generates the superhydrophobicity. A recent quantitative study (Zheng et al., Langmuir 2005, 21, 12207) showed that the larger the slenderness ratio of the surface structures was, the more stable the Cassie-Baxter wetting mode would be. On the other hand, it is well-known that more slender surface structures can only sustain lower critical water pressures for structure buckling, or Euler instability, while in the natural environments, the water pressure impacting on the lotus surface can reach a fairly high value (10(5) Pa in a heavy rain). Our analysis reveals that the two-scale structure of the lotus leaf surfaces is necessary for keeping both the structure and the superhydrophobicity stable. Furthermore, we find that the water-air interfacial tension makes the slender surface structure more instable and the two-scale structure a necessity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据