4.6 Article

Screening of the effect of surface energy of microchannels on microfluidic emulsification

期刊

LANGMUIR
卷 23, 期 15, 页码 8010-8014

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la7005875

关键词

-

向作者/读者索取更多资源

We report the results of a systematic study of the effect of the surface energy of the walls of microchannels on emulsification in parallel flow-focusing microfluidic devices. We investigated the formation of water-in-oil (W/O) and oil-in-water (O/W) emulsions and found that the stability of microfluidic emulsification depends critically on the preferential wetting of the walls of the microfluidic device by the continuous phase. The condition for stable operation of the device is, however, different than that of complete wetting of the walls by the continuous phase at equilibrium. We found that W/O emulsions form when the advancing contact angle of water on the channel wall exceeds theta approximate to 92 degrees. This result is unexpected because at equilibrium even for theta < 92 degrees the microchannels would be completely wet by the organic phase. The criterion for the formation of W/O emulsions (theta > 92 degrees) is thus more stringent than the equilibrium conditions. Conversely, we observed the stable formation of O/W emulsions for theta < 92 degrees, that is, when the nonequilibrium transition to complete wetting by oil takes place. These results underlie the importance of pinning and the kinetic wetting effects in microfluidic emulsification. The results suggest that the use of parallel devices can facilitate fast screening of physicochemical conditions for emulsification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据