4.8 Article

Adenoviral E1B55K oncoprotein sequesters candidate leukemia suppressor sequence-specific single-stranded DNA-binding protein 2 into aggresomes

期刊

ONCOGENE
卷 26, 期 33, 页码 4797-4805

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1210281

关键词

SSBP2; E1B55K; direct interaction; colocalization; aggresomes

资金

  1. NCI NIH HHS [CA97093, CA16672, T32 CA064041] Funding Source: Medline
  2. NHLBI NIH HHS [HL074449] Funding Source: Medline

向作者/读者索取更多资源

Sequence-specific single-stranded DNA-binding protein 2 (SSBP2) is a candidate tumor suppressor for human acute myelogenous leukemia (AML). Inducible expression of SSBP2 causes growth arrest and partial differentiation in AML cells. Here, we report that the adenoviral oncoprotein E1B55K directly binds to endogenous SSBP2 protein and sequesters it into juxtanuclear bodies in adenovirally transformed human embryonic kidney (HEK) 293 cells. Similarly, transient expression of E1B55K in IMR90 fibroblasts and HeLa cells result in the formation of juxtanuclear bodies containing SSBP2. When nuclear export of E1B55K is prevented, SSBP2 remains associated with E1B55K in nuclear foci. A requirement for intact microtubules to retain the integrity of the juxtanuclear bodies suggests them to be E1B55K containing aggresomes. The adenoviral E1B55K protein has been shown to localize to the Mre11 complex and p53 to aggresome structures; together with the viral E4orf6 protein, E1B55K recruits a cellular E3 ubiquitin ligase that induces degradation of Mre11 and p53. However, our present studies reveal that E1B55K does not degrade SSBP2. These data demonstrate that E1B55K targets the candidate leukemia suppressor SSBP2 and suggest that subverting its function may contribute to cell transformation by viral oncoproteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据