4.7 Article

Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 146, 期 1-2, 页码 164-170

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2006.12.003

关键词

hydroxyapatite; heavy metals; competitive sorption; surface complexation; ion exchange

向作者/读者索取更多资源

Toxic metals contamination of waters, soils and sediments can seriously affect plants, animals and human being. The bioavailability of metal ions can be reduced trapping them in minerals with low solubilities. This study investigated the sorption of aqueous Cu and Zn onto hydroxyapatite surfaces. Batch experiments were carried out using synthetic hydroxyapatite. The metals were applied as single or binary species, in a range of metal concentrations ranging from 0 to 8 mmol/L at 25 +/- 2 degrees C. The removal capacity of hydroxyapatite was 0.0 16-0.764 mmol of Cu/g and 0.015-0.725 mmol of Zn/g. In the Cu-Zn binary system, competitive metal sorption occurred with reduction of the removal capacity by 13-76% and 10-63% for Cu and Zn, respectively, compared to the single-metal systems. The sorption of Cu and Zn was well characterized by the Langmuir model. Heavy metal immobilization was attributed to a two-step mechanism: first rapid surface complexation and secondly partial dissolution of hydroxyapatite and ion exchange with Ca followed by the precipitation of a heavy metal-containing hydroxyapatite. (C) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据