4.6 Article

Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 29, 页码 21460-21466

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M701985200

关键词

-

向作者/读者索取更多资源

Arabidopsis thaliana contains multiple carboxyesterases (AtCXEs) with activities toward xenobiotics, including herbicide esters that are activated to their phytotoxic acids upon hydrolysis. On the basis of their susceptibility to inhibition by organophosphates, these AtCXEs are all serine hydrolases. Using a trifunctional probe bearing a fluorophosphonate together with biotin and rhodamine to facilitate detection and recovery, four dominant serine hydrolases were identified in the proteome of Arabidopsis. Using a combination of protein purification, capture with the trifunctional probe and proteomics, one of these hydrolases, AtCXE12, was shown to be the major carboxyesterase responsible for hydrolyzing the pro-herbicide methyl-2,4-dichlorophenoxyacetate (2,4-D-methyl) to the phytotoxic acid 2,4-dichlorophenoxyacetic acid. Recombinant expression of the other identified hydrolases showed that AtCXE12 was unique in hydrolyzing 2,4-D-methyl. To determine the importance of AtCXE12 in herbicide metabolism and efficacy, the respective tDNA knock-out (atcxe12) plants were characterized and shown to lack expression of AtCXE12 and have greatly reduced levels of 2,4-D-methyl-hydrolyzing activity. Young atcxe12 seedlings were less sensitive than wild type plants to 2,4-D-methyl, confirming a role for the enzyme in herbicide bioactivation in Arabidopsis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据