4.7 Article

Second order explicitly correlated R12 theory revisited: A second quantization framework for treatment of the operators' partitionings

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 127, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2751163

关键词

-

向作者/读者索取更多资源

Second order R12 theory is presented and derived alternatively using the second quantized hole-particle formalism. We have shown that in order to ensure the strong orthogonality between the R12 and the conventional part of the wave function, the explicit use of projection operators can be easily avoided by an appropriate partitioning of the involved operators to parts which are fully describable within the computational orbital basis and complementary parts that involve imaginary orbitals from the complete orbital basis. Various Hamiltonian splittings are discussed and computationally investigated for a set of nine molecules and their atomization energies. If no generalized Brillouin condition is assumed, with all relevant partitionings the one-particle contribution arising in the explicitly correlated part of the first order wave function has to be considered and has a significant role when smaller atomic orbital basis sets are used. The most appropriate Hamiltonian splitting results if one follows the conventional perturbation theory for a general non-Hartree-Fock reference. Then, no couplings between the R12 part and the conventional part arise within the first order wave function. The computationally most favorable splitting when the whole complementary part of the Hamiltonian is treated as a perturbation fails badly. These conclusions also apply to MP2-F12 approaches with different correlation factors. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据