4.7 Article

Absorbance characterization of microsphere-based ion-selective optodes

期刊

ANALYTICA CHIMICA ACTA
卷 596, 期 2, 页码 195-200

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2007.06.015

关键词

absorbance; microsphere; fluorescence; ion-selective optical sensor; chromoionophore

向作者/读者索取更多资源

lonophore-based microsphere sensors are characterized here in transmission mode. These sensors contain a lipophilic ionophore for the analyte cation, a chromoionophore for recognizing H+, and a lipophilic cation-exchanger. They function on the basis of an ion-exchange equilibration step where an increased concentration of analyte ion leads to increased level of extraction into the bulk of the microsphere, expelling protons in return and deprotonating the chromoionophore. Since the path length is variable across the microsphere, such bead-based sensors are normally characterized in fluorescence mode. In this paper, the response of the sensing microspheres is calculated from the ratio of transmitted light intensities at the absorbance peak maxima of the protonated and unprotonated forms of the chromoionophore. At a fixed position of the particle, the resulting responses are found to be independent of light scattering, incident light intensity and the shape or size of the microsphere. The responses of potassium-selective microspheres obtained by this method agree quantitatively with corresponding fluorescence-based data. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据