4.6 Article

Immersed electrokinetic finite element method

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.1941

关键词

immersed finite element method; electrokinetics; dielectrophoretic assembly; biomolecules; nanowires; Euler-Lagrange mapping

向作者/读者索取更多资源

A new method is proposed for modelling the electrokinetic-induced mechanical motion of particles in a fluid domain under an applied electric field. In this method, independent solid meshes move in a fixed background field mesh that models the fluid and the electric field. This simple strategy removes the need for expensive mesh updates. Furthermore, the reproducing kernel particle functions enable efficient coupling of various immersed deformable solids with the surrounding viscous fluid in the presence of an applied electric field. The electric force on a particle is calculated by the Maxwell stress tensor method. For the first time, three-dimensional assembly of nano/biomaterials of various geometries and electrical properties have been comprehensively studied using the new method. Simulation of the dynamic process of electro-manipulation of individual and multiple cells agrees well with experimental data. Preliminary results for selective deposition of viruses and stretching of a DNA molecule are also presented. Copyright (C) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据