4.7 Article

Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006JB004608

关键词

-

资金

  1. Directorate For Geosciences
  2. Division Of Earth Sciences [0914712] Funding Source: National Science Foundation

向作者/读者索取更多资源

[1] Viscous shear in the asthenosphere accommodates relative motion between Earth's surface plates and underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Because this fabric develops with the evolving mantle flow field, observations of seismic anisotropy can constrain asthenospheric flow patterns if the contribution of fossil lithospheric anisotropy is small. We use global viscous mantle flow models to characterize the relationship between asthenospheric deformation and LPO and compare the predicted pattern of anisotropy to a global compilation of observed shear wave splitting measurements. For asthenosphere >500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus we expect the ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO with the ISA and assuming A-type fabric ( olivine a axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit 13 degrees). Continental anisotropy is less well fit (average misfit 41 degrees), but lateral variations in lithospheric thickness improve the fit in some continental areas. This suggests that asthenospheric anisotropy contributes to shear wave splitting for both continents and oceans but is overlain by a stronger layer of lithospheric anisotropy for continents. The contribution of the oceanic lithosphere is likely smaller because it is thinner, younger, and less deformed than its continental counterpart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据