4.7 Article

The role of a hydrogen bonding network in the transmembrane β-barrel OMPLA

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 370, 期 5, 页码 912-924

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2007.05.009

关键词

OMPLA; hydrogen bond; membrane protein; oligomerization; analytical ultracentrifugation

向作者/读者索取更多资源

The hydrogen bonding of polar side-chains has emerged as an important theme for membrane protein interactions. The crystal structure of the dimeric state of the transmembrane beta-barrel protein outer membrane phospholipase A (OMPLA) revealed an intermolecular hydrogen bond mediated by a highly conserved glutamine side-chain (Q94). It has been shown that the introduction of a polar residue can drive the association of model helices, and by extension it was presumed that the glutamine hydrogen bond played a key role in stabilizing the OMPLA dimer. However, a thermodynamic investigation using sedimentation equilibrium ultracentrifugation in detergent miclles reveals that the hydrogen bond plays only a very modest role in stabilizing the dimer. The Q94 side-chain is hydrogen bonded intramolecularly to residues Y92 and S96, but amino acid substitutions at these positions suggest these intramolecular interactions are not responsible for attenuating the strength of the intermolecular Q94 hydrogen bond. Other substitutions suggested that hydration of the local environment around Q94 may be responsible for the modest strength of the hydrogen bond. Heat inactivation experiments with the variants suggest that the Y92-Q94-S96 network may instead be important for thermal stability of the monomer. These results highlight the context dependence and broad range of interactions that can be mediated by polar residues in membrane proteins. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据