4.5 Article

A versatile approach to transform low-affinity peptides into protein probes with cotranslationally expressed chemical cross-linker

期刊

ANALYTICAL BIOCHEMISTRY
卷 405, 期 1, 页码 82-88

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2010.05.026

关键词

Peptides; Genetic expression; Protein detection; Cross-linking; L-DOPA

资金

  1. Welch Foundation [F1618]
  2. National Institutes of Health [RO1 CA120 168]

向作者/读者索取更多资源

The potential usefulness of artificially selected peptides as probes to detect specific proteins has been proposed because of the ease and low cost of syntheses, manipulation, and genetic expression. However, the affinities of these peptides to their target proteins are generally too low to be practical as diagnostic or bioanalytical reagents. One approach to this problem is to incorporate a redox-active amino acid, 3,4-dihydroxy-L-phenylalanine (L-DOPA), that selectively forms a covalent linkage to the target protein. Such peptide-based probes can also be fused to tailored reporter proteins and easily expressed in bacterial cultures. As a demonstration, a candidate peptide, TOP1, that weakly binds to the target protein, the Src homology 3 (SH3) domain of human Abelson tyrosine kinase (Abl), was fused to green fluorescent protein (GFP) and L-DOPA was site-specifically incorporated into the peptide region (TOP1-DOPA-GFP). TOP1-DOPA-GFP produced from Escherichia coli was used in a Western blot-type experiment to show that the Abl SH3 domain can be detected in one step by observing the fluorescence. The molecular design presented in this work is significant in that the same approach could be used to transform many other protein-binding peptides with insufficient affinities into protein detection probes with a variety of fused reporter or therapeutic proteins. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据