4.7 Article

Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites

期刊

POLYMER
卷 48, 期 16, 页码 4855-4866

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2007.06.015

关键词

panicle dispersion metric; carbon nanotubes; nanocomposite

向作者/读者索取更多资源

Particle spatial dispersion is a crucial characteristic of polymer composite materials and this property is recognized as especially important in nanocomposite materials due to the general tendency of nanoparticles to aggregate under processing conditions. We introduce dispersion metrics along with a specified dispersion scale over which material homogeneity is measured and consider how the dispersion metrics correlate quantitatively with the variation of basic nanocomposite properties. We then address the general problem of quantifying nanoparticle spatial dispersion in model nanocomposites of single-walled carbon nanotubes (SWNTs) dispersed in poly(methyl methacrylate) (PMMA) at afixed SWNT concentration of 0.5% using a 'coagulation' fabrication method. Two methods are utilized to measure dispersion, UV-vis spectroscopy and optical confocal microscopy. Quantitative spatial dispersion levels were obtained through image analysis to obtain a 'relative dispersion index' (RDI) representing the uniformity of the dispersion of SWNTs in the samples and through absorbance. We find that the storage modulus, electrical conductivity, and flammability property of the nanocomposites correlate well with the RDL For the nanocomposites containing the same amount of SWNTs, the relationships between the quantified dispersion levels and physical properties show about four orders of magnitude variation in storage modulus, almost eight orders of magnitude variation in electric conductivity, and about 70% reduction in peak mass toss rate at the highest dispersion level used in this study. The observation of such a profound effect of SWNT dispersion indicates the need for objective dispersion metrics for correlating and understanding how the properties of nanocomposites are determined by the concentration, shape and size of the nanotubes. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据