4.7 Article

Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 34, 期 14, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007GL029876

关键词

-

向作者/读者索取更多资源

The impact of dust in the Saharan Air Layer ( SAL) acting as cloud condensation nuclei (CCN) on the evolution of a tropical cyclone (TC) was examined by conducting simulations initialized with an idealized pre-TC mesoscale convective vortex (MCV) using the Regional Atmospheric Modeling System ( RAMS). Increasing the background CCN concentration from 100 to 1000 and 2000 cm(-3) in a layer between 1 and 5 km led to increases in averaged cloud droplet number concentration, and decreases in cloud droplet mean mass diameter through the entire simulation except during the initial spin-up. Dust in the SAL as CCN influenced the TC development by inducing changes in the hydrometeor properties, modifying the storm diabatic heating distribution and thermodynamic structure, and ultimately influencing the TC intensity through complex dynamical responses. The simulated storm intensities differed by up to 22 hPa depending on CCN concentration. The impact of CCN on storm intensity was sensitive to the background giant CCN (GCCN) vertical profile and presumably other environmental factors. The physical processes responsible for the impact of dust as nucleating aerosols on TC development need to be examined in the future under a wide range of environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据