4.5 Article

Cold sensitivity of recombinant TRPA1 channels

期刊

BRAIN RESEARCH
卷 1160, 期 -, 页码 39-46

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2007.05.047

关键词

thermo TRP channel; patch-clamp; Ca imaging; allyl isothiocyanate

向作者/读者索取更多资源

TRPM8 and TRPA1, members of the transient receptor potential (TRP) channel family, are candidates for cooling-activated receptors. It is accepted that TRPM8 responds to moderate cooling, although it is controversial whether TRPA1 responds to deep cooling. Here, using Ca2+ imaging and/or patch-clamp recordings, we examined the thermal sensitivity of primary cultured dorsal root ganglion (DRG) neurons and mouse TRPA1-expressing human embryonic kidney (HEK) 293 cells. In a subset of cultured mouse DRG neurons, deep cooling (5-18 degrees C) and allyl isothiocyanate (AITC, agonist of TRPA1) induced increases in intracellular Ca 2, level. Most AITC-sensitive (TRPA1-expressing) neurons responded to deep cooling. In TRPA1-expressing HEK293 cells, deep cooling and AITC-induced Ca2+ responses and whole-cell currents. in inside-out patches excised from TRPA1-expressing HEK293 cells, deep cooling, and AITC activated the same channels, which were inhibited by camphor (antagonist for TRPA1). When temperature was decreased below 18 degrees C, unit conductance of the channel decreased but open probability of it increased. Deep cooling-induced increase of the open probability of TRPA1 may underlie the increase in whole-cell currents induced by deep cooling. It is concluded that TRPA1 is a deep cooling-activated channel, which supports the previous findings that TRPA1 responds to deep cooling. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据