4.7 Article

Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 246, 期 2-3, 页码 208-221

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2007.03.072

关键词

agroforestry; biodiversity; carbon sequestration; clean development mechanism; ecosystem services; tropical land-use change

类别

向作者/读者索取更多资源

Despite growing evidence for an effect of species composition on carbon (C) storage and sequestration, few projects have examined the implications of such a relationship for forestry and agriculture-based climate change mitigation activities. We worked with a community in Eastern Panama to determine the average above- and below-ground C stocks of three land-use types in their territory: managed forest, agroforests and pasture. We examined evidence for a functional relationship between tree-species diversity and C storage in each land-use type, and also explored how the use of particular tree species by community members could affect C storage. We found that managed forests in this landscape stored an average of 335 Mg C ha(-1), traditional agroforests an average of 145 Mg C ha(-1), and pastures an average of 46 Mg C ha(-1) including all vegetation-based C stocks and soil C to 40 cm depth. We did not detect a relationship between diversity and C storage; however, the relative contributions of species to C storage per hectare in forests and agroforests were highly skewed and often were not proportional to species' relative abundances. We conclude that protecting forests from conversion to pasture would have the greatest positive impact on C stocks, even though the forests are managed by community members for timber and non-timber forest products. However, because several of the tree species that contribute the most to C storage in forests were identified by community members as preferred timber species, we suggest that species-level management will be important to avoiding C-impoverishment through selective logging in these forests. Our data also indicate that expanding agroforests into areas currently under pasture could sequester significant amounts of carbon while providing biodiversity and livelihood benefits that the most common reforestation systems in the region - monoculture teak plantations - do not provide. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据