4.8 Article

Enhanced circulation time and antitumor activity of doxorubicin by comblike polymer-incorporated liposomes

期刊

JOURNAL OF CONTROLLED RELEASE
卷 120, 期 3, 页码 161-168

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2007.03.020

关键词

comblike polymer; liposomes; circulation time; biodistribution

向作者/读者索取更多资源

Polymer incorporation on liposomal membranes has been extensively studied as a method of enhancing the circulation time of liposomes in the bloodstream. In this study, we investigated the in vitro and in vivo characteristics of liposomes whose surface was modified using a comblike polymer comprised of a poly(methyl metbacrylate) (PMMA) backbone and short poly(ethylene oxide) (PEO) side chains. Doxorubicin (DOX)-loaded liposomes incorporating with the comblike polymer were prepared and their circulation time, biodistribution and antitumor activity were evaluated in B16F10 melanoma tumor-bearing mice. The circulation half-life time in the bloodstream of the comblike polymer-incorporated liposomes (CPILs) was approximately 14- or 2-fold higher than those of the conventional or polyethyleneglycol-fixed liposomes (PEG-liposomes), respectively. Additionally, in the biodistribution assay, the accumulation of the CPILs in the tumor was higher than those of the other liposomes. Based on this result, the antitumor activities of the CPILs were higher than those of conventional liposome formulation of DOX or free DOX due to the higher passive targeting efficiency of the long-circulating CPlLs to tumor. This study suggests that the incorporation of the comblike polymer on the liposomal membrane is a promising tool to further improve circulation time of liposomes in tumor-bearing mice. (c) 2007 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据