4.4 Article

Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels

期刊

JOURNAL OF MICROMECHANICS AND MICROENGINEERING
卷 17, 期 8, 页码 1479-1486

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/17/8/009

关键词

-

向作者/读者索取更多资源

In this work, we designed and fabricated a three-dimensional hydrodynamic focusing microfluidic device. The device comprises a two-layer PDMS microchannel structure. There are four inlet ports and one outlet port. The fluids are all injected by syringe pumps. A sample flow stream was first vertically constrained into a narrow stream, and then horizontally focused on one small core region from a cross-section perspective, which is useful for cell/particle counting. We showed the numerical and experimental images of the focused stream shape from a cross-section perspective; experimental images were captured using a confocal fluorescence microscope. We also investigated the effect of channel aspect ratio on the vertical focusing effect using CFD simulations. The results showed that the sample flow can be focused successfully in the lower aspect ratio of the main channel (slightly greater than 0.5) in our design. Furthermore, the effect of the Reynolds number on the vertical focusing effect was also investigated. The numerical results showed that the rectangular-like shape of the focused stream from the cross-section perspective was deformed as the Reynolds number was high due to stronger secondary flows produced in the vertical focusing unit. This phenomenon was also demonstrated experimentally. The device only works well at low Reynolds numbers (approximately less than 5). The device can be integrated into an on-chip flow cytometer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据