4.5 Article Proceedings Paper

Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys

向作者/读者索取更多资源

A volume-averaged model for finite-rate diffusion of hydrogen in the melt is developed to predict pore formation during the solidification of aluminum alloys. The calculation of the micro-/macro-scale gas species transport in the melt is coupled with a model for the feeding flow and pressure field. The rate of pore growth is shown to be proportional to the local level of gas supersaturation in the melt, as well as various microstructural parameters. Parametric studies of one-dimensional solidification under an imposed temperature gradient and cooling rate illustrate that the model captures important phenomena observed in porosity formation in aluminum alloys. The transition from gas to shrinkage dominated porosity and the effects of different solubilities of hydrogen in the eutectic solid, capillary pressures at pore nucleation, and pore number densities are investigated in detail. Comparisons between predicted porosity percentages and previous experimental measurements show good correspondence, although some uncertainties remain regarding the extent of impingement of solid on the pores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据