4.4 Article

Thermo mechanical behaviour of unsaturated polyester toughened epoxy-clay hybrid nanocomposites

期刊

JOURNAL OF POLYMER RESEARCH
卷 14, 期 4, 页码 319-328

出版社

SPRINGER
DOI: 10.1007/s10965-007-9114-x

关键词

epoxy resin; unsaturated polyester; mechanical properties; thermal analysis; morphology; nanocomposites

向作者/读者索取更多资源

The intercrosslinked networks of unsaturated polyester (UP) toughened epoxy-clay hybrid nanocomposites have been developed. Epoxy resin (DGEBA) was toughened with 5, 10 and 15% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4'-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of unsaturated polyester with the epoxy resin was carried out thermally in presence of benzoyl peroxide-radical initiator and the resulting product was analyzed by FT-IR spectra. Epoxy and unsaturated polyester toughened epoxy systems were further modified with 1, 3 and 5% (by wt) of organophilic montmorillonite (MMT) clay. Clay filled hybrid UP-epoxy matrices, developed in the form of castings were characterized for their thermal and mechanical properties. Thermal behaviour of the matrices was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data resulted from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improved the thermal stability and impact strength to an appreciable extent. The impact strength of 3% clay filled epoxy system was increased by 19.2% compared to that of unmodified epoxy resin system. However, the introduction of both UP and organophilic MMT clay into epoxy resin enhanced the values of mechanical properties and thermal stability according to their percentage content. The impact strength of 3% clay filled 10% UP toughened epoxy system was increased by 26.3% compared to that of unmodified epoxy system. The intercalated nanocomposites exhibited higher dynamic modulus (from 3,072 to 3,820 MPa) than unmodified epoxy resin. From the X-ray diffraction (XRD) analysis, it was observed that the presence of d(001) reflections of the organophilic MMT clay in the cured product indicated the development of intercalated clay structure which in turn confirmed the formation of intercalated nanocomposites. The homogeneous morphologies of the UP toughened epoxy and UP toughened epoxy-clay hybrid systems were ascertained from scanning electron microscope (SEM).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据